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The relativity principle that the law of propagation for light has the same form 
for all macroscopic observers is extended to include quantum observers; i.e., 
observers who may be large, but not infinitely large, by comparison with 
quantum mechanical systems. This leads to the extension of the covariance group 
from the diffeomorphisms to the conservation group (which is the largest group 
of coordinate transformations under which conservation laws are covariant 
statements) and, thus, to the quantum geometry and quantum unified field 
theory considered in a previous paper. 

1. I N T R O D U C T I O N  

In  a previous paper  (Pandres,  1981), hereafter referred to as I, we 
obta ined  a q u a n t u m  unified field theory by pursuing a suggestion (Einstein, 
1949) that the dif feomorphisms somehow be extended to a larger group. A 
d i f feomorphism f rom coordinates  x"  to x i satisfies the commuta t ion  condi- 
t ion [Or, 0 ~ ] x i = 0 .  Our  notat ion is that of  I. In I, we replaced this 
commuta t ion  condi t ion with the weaker condit ion 

(i) 

and, showed that equat ion (1) defines a group which contains the diffeo- 
morphisms as a proper  subgroup.  A conservat ion law is an expression of  the 
form ~ a  = 0, where ~ "  is a vector density of  weight + 1. We showed, in 
I, that  equat ion (1) defines the largest group of  coordinate  t ransformations 
under  which conservat ion laws are covariant  statements. For  this reason, we 
have called a coordinate  t ransformat ion conservative if it satisfies equat ion 
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(1), and, have called the group of all such transformations the conservation 
group. This group is so large that points do not have invariant meaning. (A 
conservative coordinate transformation from x" to x i is generally both 
one-to-many and many-to-one; hence, nonunique in both directions, even in 
finite coordinate patches.) Therefore, the geometry which is determined by 
the conservation group (as Riemann geometry is determined by the diffeo- 
morphisms) is not defined on a differentiable manifold. It is defined on a 
space in which paths (which do have invariant meaning) are the primary 
elements. Path-space possesses properties which are sufficiently close to 
what one conceives of intuitively as a space so that one may use it almost 
exactly as one conventionally uses a differentiable manifold. Many investi- 
gators have expressed skepticism that a differentiable manifold adequately 
describes physical space-time. Because the primary elements are paths, it is 
natural to quantize the path-space geometry by using the path-integral 
method. By considering the macroscopic limit of the quantum geometry, in 
I, we obtained field equations which describe gravitation and electromag- 
netism, and which also contain terms that appear suitable for describing the 
weak and strong interactions. While these results are encouraging, it must be 
admitted that our introduction of the conservation group is lacking (thus 
far, at least) in the sort of compelling physical motivation which caused 
Einstein to introduce the diffeomorphisms. After all, there do exist ob- 
servers who are accelerated with respect to one another, and, evidence of 
their equivalence is provided by the proportionality of inertial and gravita- 
tional mass. But, is there a need for the inclusion of some still more general 
class of observers? 

2. QUANTUM OBSERVERS 

General relativity makes use of a classical observer who can observe the 
motion of a physical system without disturbing the system. This violates the 
fundamental principles of quantum theory. Most discussions of observation 
in quantum theory make use of a "macroscopic" classical observer--one 
who can "stand outside" a quantum mechanical system and act upon the 
system without being acted upon by the system. This is unsatisfactory, 
because there exist no observers who are infinitely large by comparison with 
quantum mechanical systems. One solution of this problem was given by 
Everett (1957). He considers a quantum observer's memory to have quantum 
states that are correlated with the states of what he has observed. Each 
observer can then consider himself a macroscopic observer (since his differ- 
ent states are independent) and still treat other observers as part of his 
quantum mechanical universe. Each observer can also assign coordinates to 
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events in his universe. The uncertainty principle does not limit the precision 
with which he can do this, because the four operators which represent his 
coordinates commute. Let f~ and O be two observers, each of whom 
considers himself a macroscopic observer, while treating the other as part of 
a quantum mechanical universe. Let x ~ and x ~ be coordinates which are 
assigned by ~2 and O, respectively, to events in their universes. The 
assumption that physical space-time is a differentiable manifold rests 
squarely upon the assertion that it is possible to establish a one-to-one 
correspondence between x * and x ~, at least in finite coordinate patches. 
Einstein challenged the validity of Newton's absolute time on the ground 
that no operational method had been or could be, given for its measure- 
ment. In this spirit, we challenge the validity of the assumption that 
space-time is a differentiable manifold on the ground that no operational 
method has been, or can be, given for establishing a one-to-one correspon- 
dence between the coordinates x ~ and x ~. Our two observers are free to 
exchange information, so that, for example, f~ can possess a complete 
description of the procedure which O uses in assigning coordinates to 
events. If ~2 could also state with certainty (as in general relativity) that O's 
world line is a particular path P, then he could write a function uniquely 
specifying O's coordinates x i in terms of his own coordinates x ~. Thus x; 
could be regarded as a functional of the path P (which has the terminus x ~ 
since the observer in general relativity is a tetrad at the event being 
investigated) 

xi = x '{  e } (2) 

However, ~2 has described O's world line as completely as nature permits 
when he states that all paths occur with equal probability amplitude, in the 
sense that the probability amplitude for a path P is Ne iL~pl/*, where L is 
f~'s Lagrangian for O, N is a normalization factor (the same for all paths), 
and h is the usual quantum of angular momentum. Therefore, ~2 can only 
state that the probability amplitude for O's coordinate number x ~ corre- 
sponding to his coordinate number x a is 

�9 t ' (x ' ,  x" )  = E N e  'Lcel/h (3) 
P 

where Ee denotes the democratic sum with equal weight of contributions 
due to all paths with terminus x" such that equation (2) yields the value x;. 
As a world-point mapping, xI'(x i, x ~) is both one-to-many and many-to-one; 
hence, nonunique in both directions, as are our conservative coordinate 
transformations. As the size of observer O increases without limit, we find 
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that the competing alternatives in equation (3) interfere destructively on all 
but the classically allowed path. Thus, equation (2) goes over to x ~ = x~(x ~) 
in the macroscopic limit. This just means that the group of all quantum 
coordinate transformations, defined by equations (2) and (3) contains the 
diffeomorphisms as a proper subgroup, as does our conservation group. 

We are now in a position which permits us to present additional 
evidence that the inclusion of quantum observers, on an equivalent basis, 
requires the extension of the covariance group to the conservation group. 
We could simply say: "Experience shows that if ~2 observes that a certain 
quantity is conserved, then O also observes that the same quantity is 
conserved." On the other hand, it is absolutely essential that such a 
fundamental principle as the covariance law be derivable from the simplest 
possible basic assumption. We therefore return to the assumption which 
led Einstein to special relativity--that the equation which describes the 
propagation of light (the wave equation) has the same form for all ob- 
servers. It is well known that the wave equation may be written in the form 
(( - g)X/2g~'"4P,,,).~, = 0 in general relativity; and, that this form, which does 
not involve "covariant derivatives" or Christoffel symbols, is nevertheless 
covariant under the diffeomorphisms. We note that this general relativistic 
statement of the wave equation is already in the form of a conservation law: 
U".~,=0, where ~ '  is the vector density of weight +1 defined by 
~ = ( _  g)~/Zg,,,~ .... The results described immediately following equation 
(1) now suffice to show that the conservation group is the largest group of 
coordinate transformations under which the equation for the propagation of 
light is covariant. 
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